1. (i) Decane
(ii) Skeletal formula of branched $\mathrm{C}_{10} \mathrm{H}_{22}$

Formula must be skeletal AND must not include any symbol, e.g. CH_{3} Any possible skeletal formulae e.g.

(iii) Decane has more surface contact

OR branched chains have less surface contact

Both answers need to be comparisons

Assume 'it' refers to decane
IGNORE surface area
ALLOW straight chains can get closer together
OR branched chains cannot get as close to one another
IGNORE branched chain are more compact
Decane has more van der Waals' forces
OR branched chains have fewer van der Waals' forces
ALLOW Decane has stronger van der Waals'forces
OR branched chains have weaker van der Waals' forces
More intermolecular forces is not sufficient
(iv) Branched chains have more efficient combustion OR decane has less efficient combustion

ALLOW branched chains are easier to burn
OR easier to combust
OR burn better
OR more efficient fuel
OR less likely to produce pre-ignition or knocking
OR increases octane rating
ALLOW ORA for decane
Better fuel is NOT sufficient
Burns more cleanly is NOT sufficient
2. (i) $\underline{34.0} \times 100$
267.4
12.7\%

First mark for 267.4 OR (34.0 + 233.4) OR $(169.3+98.1)$ at bottom of fraction with or without $\times 100$
ALLOW from 2 sig figs up to calculator value ALLOW full marks for 13 OR 12.7 OR 12.72 OR 12.715 up to calculator value with no working out
12.71 scores one mark only

NO ECF for this part from incorrect numbers in first expression
(ii) Any three from the following:

Oxygen comes from air
IGNORE hydrogen comes from the air
No poisonous materials formed
OR no poisonous materials involved
IGNORE harmful
No waste products formed OR atom economy is 100%
ALLOW higher atom economy
Anthraquinone is regenerated OR recycled OR used again OR Anthraquinone acts as a catalyst

3. EITHER

Nucleophilic substitution
Example of nucleophilic substitution
Heterolytic fission
C-I curly arrow
Correct dipole on C - I bond
OH^{-}curly arrow from one lone pair on O of OH^{-}ion
OR from minus sign on OH^{-}ion
OR
Electrophilic addition
Example of electrophilic addition
Heterolytic fission
Curly arrow from $\mathrm{C}=\mathrm{C}$ bond to $\mathrm{Br}-\mathrm{Br}$ bond and
Dipole and curly arrow associated with Br_{2}
Correct carbocation ion
Curly arrow from one lone pair on Br^{-}ion
OR from minus sign on Br^{-}ion

The example mark can be awarded as an example of the name of the mechanism given or if the name is wrong can be given as an example of a reasonably correct drawn mechanism If curly half arrows drawn do not give a mark the first time used and then apply ECF

ALLOW mechanisms for other halogenoalkaes

ALLOW mechanisms for other halogens and hydrogen halides

```
ALLOW
Electrophilic substitution \(\checkmark\)
Example of electrophilic substitution
Heterolytic fission
Curly arrow from benzene ring to the electrophile (i.e. \(\mathrm{NO}_{2}^{+} \mathrm{OR} \mathrm{Br}^{+}\))
Correct intermediate
Curly arrow to show loss of hydrogen ion
```


ALLOW

Nucleophilic addition
Example of nucleophilic addition
Heterolytic fission \checkmark
Correct dipole on carbonyl group
Curly arrow from lone pair on H^{-}ion
OR from minus sign on H^{-}to $\mathrm{C}=\mathrm{O}$ carbon and breaking of $\mathrm{C}=\mathrm{O}$ bond
Curly arrow from carbonyl oxygen to either H^{+}or $\mathrm{H}_{2} \mathrm{O}$
4.

Formula must be skeletal AND not include any symbol except for OH
5. (i) Same molecular formula but different structural formulae

ALLOW Same molecular formula but different arrangement of atoms
OR Same molecular formula but different structures
OR Same molecular formula but different displayed formulae
DO NOT ALLOW Same molecular formula but different spatial arrangement of atoms
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH} \checkmark$

ALLOW

ALLOW displayed formula
ALLOW sticks (i.e. no H shown bonded to C)

ALLOW correct ethers
1
6. $\quad \mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+2} \checkmark$

$$
\begin{aligned}
& \text { ALLOW } C_{n} H_{2(n+1)} \\
& \text { IGNORE size of subscripts }
\end{aligned}
$$

7. skeletal formula of a branched isomer of $\mathrm{C}_{8} \mathrm{H}_{18}$
skeletal formula of a cyclic hydrocarbon OR skeletal formula of substituted arene of $\mathrm{C}_{8} \mathrm{H}_{10} \downarrow$

ALLOW any ring between C_{3} and C_{8} with 8 carbon atoms per molecule

IGNORE wrong names
If two correct structural or displayed formulae drawn award one mark
8. (i) $\mathrm{C}_{6} \mathrm{H}_{10} \checkmark$
(ii)

```
Mr (cyclohexanol ) = 100
amount of cyclohexanol }=0.0765\textrm{mol
percentage yield = 35.0%
ALLOW full marks for correct answer with no or limited
working out
ALLOW ecf from wrong molar mass i.e. 7.65\divmolar mass
ALLOW ecf from wrong amount in moles i.e. [0.0268 -
moles] × 100
ALLOW 35%
ALLOW two marks for 0.35%
If Mr of 82 is used then % yield will be 28.7 or 29 and this
is worth two marks
```

9. (i) (sum of) the molecular masses of the desired product :sum of molecular masses of all products $\times 100$

ALLOW (sum of) the molecular masses of the desired product -
sum of molecular masses of all reactants
$\times 100$
10. Structural isomer
compounds with the same molecular formula \checkmark but with different structural formulae

Stereoisomer

compounds with the same structural formula \checkmark but with different arrangements in space

Evidence of using M_{r} of 70 to calculate molecular formula of $\mathrm{C}_{5} \mathrm{H}_{10} \checkmark$
\mathbf{F} and \mathbf{G} are

Correct identification of the E and Z isomers

H is

E / Z happens because

double bonds restricts rotation \checkmark
different groups on each carbon of the double bond
ALLOW same molecular formula \checkmark but different structures \checkmark
Second marking point is DEPENDENT on first mark
ALLOW compounds with the same structure
Second marking point is DEPENDENT on first mark
This is the QWC mark
IGNORE wrong names of $\boldsymbol{F}, \boldsymbol{G}$ and \boldsymbol{H}
ALLOW structural or displayed formulae for $\boldsymbol{F}, \boldsymbol{G}$ and \boldsymbol{H}
e.g. \boldsymbol{H} is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHCH}_{2}$

ALLOW identification using trans and cis and
ALLOW this marking point as identification of another example of identifying E / Z or cis and trans if not done for \boldsymbol{F} and G
ALLOW one mark if no structures drawn but correct names given for $\boldsymbol{F}, \boldsymbol{G}$ and \boldsymbol{H} i.e E-pent-2-ene, Z-pent-2-ene and pent-1-ene
ALLOW ecf on structures if wrong molecular formula used or consistent error or slip such as having just sticks
11. $\mathrm{C}_{13} \mathrm{H}_{28}$
12. (i) $8.72 / 136.9=0.0637 \mathrm{~mol}(1)$
$\begin{array}{lll}\text { (ii) } & M_{\mathrm{r}} \text { butan-1-ol }=74(.0)(\mathbf{1}) & 2 \\ & \text { moles }=4.28 / 74.0=0.0578 \mathrm{~mol}(\mathbf{1}) & 1\end{array}$
(iii) $0.0578 / 0.0637 \times 100=90.7 \% \mathbf{(1)} 1$
13. structural isomerism:
structural isomers: same molecular formula, different structural formula (1)
structural isomers of but-1-ene: but-2-ene (1) and methylpropene (1)
geometric isomerism
$\mathrm{C}=\mathrm{C}$ prevents rotation of the double bond (1)
each C in the $\mathrm{C}=\mathrm{C}$ double bond bonded to 2 different atoms or groups (1)

1. a clear statement that links non-rotation of the double bond to the idea of groups being trapped on one side of the double bond (1)
cis but-2-ene clearly identified (1)
trans but-2-ene clearly identified (1)
2. Bonding: π-bond formed by overlap of (adjacent) p-orbitals $/ \pi$-bond labelled on diagram
diagram to show formation of the π-bond

or

Shape/bond angles:

tetrahedral around the $\mathrm{CH}_{3} \quad 1$
bond angle $=109^{\circ} 28 /\left(109-110^{\circ}\right) \quad 1$
trigonal planar around each C in the $\mathrm{C}=\mathrm{C} \quad 1$
bond angle $=120^{\circ}\left(118-122^{\circ}\right) \quad 1$

Cis-trans

cis \& trans correctly labelled eg but-2-ene $\quad 1$
require a double bond because it restricts rotation 1
each C in the $\mathrm{C}=\mathrm{C}$ double bond must be bonded to two different atoms or groups
QWC Allow mark for well constructed answer and use of three terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers, geometric
15. (i) $\mathrm{C}_{6} \mathrm{H}_{10}$ 1
(ii) $\mathrm{C}_{3} \mathrm{H}_{5} /$ ecf to (i) $\quad 1$
(iii) M_{r} of cyclohexene $=82 \quad 1$
$\% \mathrm{C}=(72 / 82) \times 100=88 \% \quad 1$
87.8% gets 1 mark
ecf to (i) and (ii) for both marks
Alternative calculation based on empirical formula:
Mass of empirical unit $=41, \% \mathrm{C}=(36 / 41) \times 100=88 \%$
16. (i) M_{r} of 2-methylpropan-1-ol $=741$
moles $=4.44 / 74=0.06 \quad 1$
(ii) moles $=5.48 / 137=0.04 \quad 1$
(iii) 66.7% 1
17. Structural/chain/positional isomers have the same molecular formula, different structure
but-1-ene/ but-2-ene/ methylpropene / cyclobutane/ methylcyclopropane
(any three or two with correct structures and names)
4 marks for structural isomerism
Cis-trans /geometric isomerism 1
cis \& trans but-2-ene clearly identified $\quad 1$
$\mathrm{C}=\mathrm{C}$ prevents rotation 1
each C in the $\mathrm{C}=\mathrm{C}$ double bond must be bonded to two different atoms or groups 1
4 marks for cis-trans isomerism
QWC: Well organised answer making use of correct terminology to include any three from: structural, geometric, cis-trans, molecular formula, restricted, rotation, stereoisomerism, stereoisomers, chain isomerism, positional isomerism, if all isomers are correctly named
18. (a) (i) reaction 1 1
(ii) reaction 4 1
(iii) reaction 3 1
(b) (i) lone pair/electron pair donor 1

Correct dipole 1
Curly arrow from the O in the OH^{-}to C in the $\mathrm{CH}_{2} \quad 1$
Curly arrow to show movement of bonded pair in the $\mathrm{C}-\mathrm{Cl}$ bond 1
Cl as a product 1
(c) (i) same molecular formula, different structure/arrangement of atoms. $\quad 2$

(d) (i) addition, (not additional) 1
(ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1
(iii) 1

19. (a) (i) $\mathrm{C}_{4} \mathrm{H}_{10} \checkmark \quad 1$
(ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \checkmark \quad 1$
(iii) B and E $\checkmark \quad 1$
(iv) A and F $\checkmark \quad 1$
(b) $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow\right) \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \mathrm{O} \checkmark \quad 1$
(c) any unambiguous formula:

$\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

$\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

buta-1,3-diene \checkmark
name ecf to the structure only if structure above has formula $C_{4} H_{6}$
20. (a) Same molecular formula, different structure /displayed formula/ arrangement of atoms/bonds
(Same formula, different structure/displayed formula/arrangement of atoms
(b) (i) 3-methylbut-1-ene and 2-methylbut-2-ene (any unambiguous structure/formula is acceptable)2
(ii) 2-methylbut-1-ene/2-methyl-1-butene $\checkmark \quad 1$
(iii) \checkmark 1

21. (i) any two from methylcyclobutane, 1,1-dimethylcyclopropane and 1,2-dimethylcyclopropane

allow

$\checkmark \checkmark$
(ii) cyclopentane
(iii)
\checkmark

22. (a)
(i) Alkene/ $\mathrm{C}=\mathrm{C} \checkmark$

Alcohol/ROH/hydroxy/hydroxyl/OH (not OH^{-}or hydroxide)
(ii) One of the C in both $\mathrm{C}=\mathrm{C}$ is joined to two atoms or groups that are the same
$\begin{array}{lll}\text { (b) } \begin{array}{ll}\text { Observation } & \text { decolourisation }\left(\text { of } \mathrm{Br}_{2}\right) \checkmark \\ \text { Molecular formula } & \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{4} \checkmark \checkmark \\ & \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{2} \text { gets 1 mark }\end{array} & 1 \\ & \end{array}$
(c) reagent
$\mathrm{CH}_{3} \mathrm{COOH} \checkmark$
catalyst
$\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{HCl}(\mathrm{aq})$ or dilute loses the mark
(d) (i) $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}+2[\mathrm{O}] \rightarrow \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$

1 mark for $\mathrm{H}_{2} \mathrm{O}$ and 1 mark for 2[O]
(ii) The infra-red spectrum was of compound \mathbf{Y} because absorption between $1680-1750 \mathrm{~cm}^{-1}$ indicates a $\mathrm{C}=\mathrm{O} \checkmark$ and the absence of a peak between $2500-3300 \mathrm{~cm}^{-1}$ shows the absence of the OH hydrogen bonded in a carboxylic acid \checkmark

